Studying TLS Usage in Android Apps

Abbas Razaghpanah Arian Akhavan Niaki Narseo Vallina-Rodriguez
Stony Brook University Stony Brook University IMDEA Networks / ICSI
arazaghpanah@cs.stonybrook.edu sakhavanniak@cs.stonybrook.edu narseo.vallina@imdea.org
Srikanth Sundaresan Johanna Amann Phillipa Gill
Princeton University ICSI U. Massachusetts — Amherst
srikanths@princeton.edu johanna@icir.org phillipa@cs.umass.edu

ABSTRACT

Transport Layer Security (TLS), has become the de-facto standard
for secure Internet communication. When used correctly, it pro-
vides secure data transfer, but used incorrectly, it can leave users
vulnerable to attacks while giving them a false sense of security.
Numerous efforts have studied the adoption of TLS (and its pre-
decessor, SSL) and its use in the desktop ecosystem, attacks, and
vulnerabilities in both desktop clients and servers. However, there
is a dearth of knowledge of how TLS is used in mobile platforms. In
this paper we use data collected by Lumen, a mobile measurement
platform, to analyze how 7,258 Android apps use TLS in the wild.
We analyze and fingerprint handshake messages to characterize the
TLS APIs and libraries that apps use, and also evaluate weaknesses.
We see that about 84% of apps use default OS APIs for TLS. Many
apps use third-party TLS libraries; in some cases they are forced
to do so because of restricted Android capabilities. Our analysis
shows that both approaches have limitations, and that improving
TLS security in mobile is not straightforward. Apps that use their
own TLS configurations may have vulnerabilities due to developer
inexperience, but apps that use OS defaults are vulnerable to certain
attacks if the OS is out of date, even if the apps themselves are up to
date. We also study certificate verification, and see low prevalence
of security measures such as certificate pinning, even among high-
risk apps such as those providing financial services, though we
did observe major third-party tracking and advertisement services
deploying certificate pinning.

CCS CONCEPTS

« Security and privacy — Security protocols;

KEYWORDS

Security Protocols, Android, Mobile, Network Measurements,
Transport Layer Security, Secure Sockets Layer, SSL, TLS, Transport
Layer Protocols, Mobile Security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5422-6/17/12...$15.00
https://doi.org/10.1145/3143361.3143400

ACM Reference Format:

Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez,
Srikanth Sundaresan, Johanna Amann, and Phillipa Gill. 2017. Studying TLS
Usage in Android Apps. In Proceedings of CONEXT ’17. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3143361.3143400

1 INTRODUCTION

With users entrusting increasingly sensitive data to their mobile
devices, there has been a push for deployment of secure communica-
tion protocols. Transport Layer Security (TLS) and its predecessor,
Secure Socket Layer (SSL) are the most widely used protocols to en-
crypt network communication, with Google observing an increase
from 50% to 85% of connections to their servers using TLS between
January 2014 and April 2017 [45] and Mozilla reporting that more
than half of observed connections use TLS [97]. Apple requires i0S
applications to use TLS [60].

However, deploying TLS is not a magic bullet: its end-to-end
architecture exposes many options that could render a bad imple-
mentation insecure, e.g., weak ciphers, or compromised Certificate
Authorities in the Public Key Infrastructure (PKI). In the desktop
era, the surface area of attacks on TLS had been mostly restricted
to a handful of browsers developed by large, well-resourced orga-
nizations. However, the “app-store” model of modern mobile OSes
vastly increases risk: we now have millions of devices that may
not have up-to-date OSes or apps; even those that do may run
apps developed by hundreds of thousands of developers who may
not understand the complexities of TLS. It is therefore critical to
understand how TLS is being used by mobile apps.

Previous efforts to understand the TLS and PKI ecosystem have
mostly relied on (i) active network scans which gives a large-scale
and longitudinal view of TLS at the server side but not the client
side, thus missing the huge variety of client devices, apps, and
versions [27, 30, 34, 84, 84, 91], (ii) static analysis of applications’
source-code which may not cover all possible code paths [41], (iii) or
dynamic analysis which requires manually inspecting apps —hence
limiting scale- in a dedicated network testbed using an in-path
MITM proxy [38].

In this paper, we present the first (to our knowledge) holistic
and large-scale study of how Android apps use TLS in the wild. We
obtain rich, but anonymized, data from Lumen Privacy Monitor,
a free Android app that we developed which monitors network
traffic locally on the device in user space, without requiring mod-
ifications to the mobile OS. Lumen has the ability to collect data
from normal user-app interactions, map network flows to apps, and
collect rich TLS handshake data. Lumen is available to download
for free from the Play Store and allows users to monitor their apps’

https://doi.org/10.1145/3143361.3143400
https://doi.org/10.1145/3143361.3143400

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

online activities and privacy leakages. Our dataset spans more than
5,000 Lumen users who downloaded the app from the Play Store
and 1,364,420 TLS handshakes generated by 7,258 apps, connecting
to 34,176 servers.

Using this data, we study:

(i) The impact of using different libraries and configurations: We
fingerprint OS versions, TLS libraries, and apps using cipher suite
lists, and show that a vast majority of apps (84% of app-versions in
our data) use OS default TLS libraries. 2.3% of apps use OpenSSL,
and another 13% use other alternative libraries or change default
settings of known libraries. These implementation choices have
security implications: apps that depend on OS default libraries
and configurations, are vulnerable if the OS itself is insecure (e.g.,
Android 4.1.1 is vulnerable to Heartbleed). According to Google,
over 60% of Android users run outdated OS versions [46]. On the
other hand, apps that use their own TLS libraries are vulnerable
to poor implementations due to developer inexperience: we see 32
app-versions announcing null ciphers (no encryption), and 32 app-
versions announcing anonymous ciphers (vulnerable to downgrade
and man-in-the-middle attacks).

(ii) Certificate verification: We dig into the mechanics and us-
age of X.509 certificate validation across apps. We analyze how
apps react to the presence of Lumen’s in-path man-in-the-middle
(MITM) TLS proxy [78] to identify those vulnerable or robust to
TLS interception. Specifically, we look at the use of bundled CA
stores, self-signed certificates, and certificate pinning. Our findings
show that these practices are not common in mobile apps; less than
2% of all apps perform either certificate pinning or CA certificate
bundling in order to prevent TLS interception.

(iii) Vulnerable TLS implementations: Using previous findings
about TLS vulnerabilities, we identify apps that are potentially
vulnerable to attacks, based on traces of their TLS handshakes.
Although most apps running on newer versions of Android likely
have fewer vulnerabilities, misconfigurations by developers can
still leave applications vulnerable. Our findings show that apps
created by well-resourced companies with dedicated security teams
tend to use better and more secure TLS configurations.

Our focus is to study the client-side of TLS usage in Android, as
a comprehensive server-side analysis would be orthogonal to the
goal of this paper and would require active measurements on the
servers. Moreover, while it is possible to perform a similar study
in iOS (and possibly other mobile platforms), we do not have a
tool similar to Lumen in iOS or any other mobile OS, and thus our
study is limited to Android. Our results paint a complex picture of
TLS on Android and suggest that the path towards better security
is murky at best. We discuss how the TLS ecosystem could be
improved by making updates to Android’s TLS APIs more reliable,
providing better access to developers using Android’s internal TLS
APIs to configure parameters, making sure OS-default trust stores
remain uncontaminated and reliable, and finally, making sure app
developers are properly trained and aware of security guidelines
and best-practices.

In § 3 and § 4 we introduce Lumen Privacy Monitor and the
dataset. In § 5 we analyze client-side TLS handshakes and extract
default TLS library fingerprints for various versions of Android OS
and third-party TLS libraries like OpenSSL and GnuTLS, and use
them to characterize how mobile app developers and third-party

A. Razaghpanah et al.

libraries (e.g., ad and analytics services) implement TLS. We also
study how apps use TLS extensions. In § 6, we study vulnerabilities
and weaknesses in different versions of TLS libraries used by apps
due to misconfigurations and developer errors. In § 7 we analyze
X.509 certificates and study how apps implement techniques such
as certificate pinning and CA bundling to detect and prevent TLS
interception proxies. We conclude our study with a discussion on
the current use of TLS by mobile applications and its implications
on mobile traffic security (§ 9).

Finally, in the interest of data transparency and hoping that the
research community will benefit from this data in furthering the
research work in this area, we have made our dataset available to
the public. !

2 BACKGROUND: ANDROID AND TLS

Transport Layer Security (TLS) is the current IETF standard that
provides a secure and reliable encrypted connection between two
end-points over an untrusted network. To make TLS deployment
simpler, Android provides application developers with the option
of using a native TLS library that is shipped with the Android OS.
Apps also have the option of using third-party or their own libraries.

A History of TLS Support in Android: Android has supported
TLS 1.0 since its first version released in 2008 and TLS 1.1 and TLS
1.2 since 2012. However, it does not provide native support for TLS
1.3 as of writing (Android 7.1). Android’s TLS support has also
evolved over OS releases, adding support for different TLS exten-
sions across versions [2] and removing old cipher suites, extensions
and parameters which had become obsolete [19]. OpenSSL was
Android’s default TLS provider [21] until it was replaced by Bor-
ingSSL, an OpenSSL fork, in Android 6.0 [4, 17]. Consequently, the
security guarantees of TLS library features vary across OS versions.
While these changes should ideally be widely applied in the form of
OS updates and security patches, in reality, Thomas et al. [86] have
shown that many Android devices do not receive security updates
in time, while many others never receive any at all. This causes
mobile apps using default TLS APIs using vulnerable cipher suites
and SSL/TLS versions on older devices vulnerable, regardless of
how up-to-date the app itself might be.

How Apps Use TLS in Android: Application developers can ei-
ther opt to use Android’s native TLS libraries or use third-party TLS
libraries (“providers” [7, 35]). GnuTLS [42] and OpenSSL are two
such providers. Android also allows app developers to implement
and use their own proprietary TLS libraries: e.g., Firefox’s Network
Security Services (NSS) [71]. Third-party providers are limited to
the current app process, and therefore their use does not affect the
system or other applications [35].

Outdated Default Libraries: According to Google’s own data on
Android version usage, as of May 2017, 61.7% of Android phones
are running Android versions 5.x (released in late 2014) and lower,
which are considered to be outdated versions of Android with
equally outdated TLS APIs. Many such phones will no longer re-
ceive security updates, as Google itself does not guarantee security

IThe dataset and instructions on how to use the data are available at
https://haystack.mobi.

Studying TLS Usage in Android Apps

updates to its own Nexus 4 phone, whose last supported version
is Android 5.1.1, after November 2015 [46]. As a result, apps us-
ing default OS-provided TLS libraries can unwittingly use old and
weak ciphers suites and protocol versions, and even be subject to
well-known vulnerabilities when they run on outdated devices,
regardless of how new the app itself might be. For instance, apps
running on devices still using unpatched Android 4.1.1 are vulnera-
ble to Heartbleed [74].

This state of affairs may influence security conscious application
developers to bundle a pre-built TLS library with their application
package (e.g., OpenSSL, NSS, GnuTLS) to gain control and ensure a
more consistent TLS configuration across different devices and OS
versions.

Root Stores: As of Android 7, Android’s official Android Open
Source Project (AOSP) source code has a list of over a 150 trusted
CAs that are audited and updated in each release. Android also
provides support for third-party root certificate installation either
manually from the system settings or programmatically [5]. This
feature is often required by enterprise networks or VPN-based
services to perform legitimate TLS interception [57, 78]. In the rare
case that a CA is breached and issues certificates for a hostname to
an adversary, Android contains a built-in blacklist in the operating
system for these certificates and CAs. The root store can vary
across different Android OS vendors, some of them adding over 50
additional certificates to the trusted root store [89]. Since Android
version 7, any app that targets API level 24 (i.e., Android 7.0) and
above does not trust any user-added CAs for TLS connections by
default (developers must explicitly allow it), thus impeding TLS
interception [18].

Securing TLS Traffic: Using TLS sockets does not necessarily
guarantee a secure connection over the Internet. Mobile app de-
velopers need to ensure that their TLS connections are properly
configured: poor configurations allowing weak cipher suites and
vulnerable TLS versions are detrimental to the security of a TLS
connection. Most TLS libraries, including Android’s native one, al-
low developers to specify and configure certain parameters of a TLS
connection and adapt them to the requirements of the application.
These range from supported protocol versions and cipher suites to
TLS extensions such as server name indication (SNI).

Once the TLS handshake is completed and the client has received
the X.509 certificate from the server, the developer is responsible
for verifying the authenticity and validity of the server certificate
using techniques like certificate pinning [7]. In fact, Android al-
lows app developers to programmatically trust a specific set of CAs,
rather than the operating system one by bundling a custom trusted
cert store with their app [6]. Unfortunately, many developers may
not correctly use Android’s TLS libraries, either due to intended
decisions (e.g., improve app’s performance due to the time required
to validate the sessions [72]) or due to lack of technical background,
thus allowing malicious in-path entities to intercept app communi-
cations using TLS interception techniques [16, 28, 66, 75].

3 LUMEN OVERVIEW

The Lumen Privacy Monitor app, available to download for free
via Google Play [65], is a tool that helps users to understand how

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

mobile apps handle their private data. In this section, we overview
the design and operation of Lumen and how we leverage its ability
to collect anonymized handshake data to analyze how Android
apps use TLS in the wild.

3.1 Capturing Traffic Locally in User-Space

Lumen acts as middleware between apps and the network interface:
it leverages the Android VPN permission and implements a simpli-
fied network stack to capture and analyze mobile traffic locally on
the device and in user-space, without requiring root permissions.
By operating in user space, Lumen can be distributed through tradi-
tional app markets and installed by any user, as long as the device is
supported. 2 This enables large-scale crowd-sourcing, with the con-
comitant benefits of enabling traffic measurements with real user
stimuli (as opposed to virtual environments [3, 98]), and also in-
creasing our app coverage by several orders of magnitude compared
to previous research efforts [38].

By running locally on the device, Lumen is also able to correlate
disparate and rich contextual information, such as app identifiers,
system version and process IDs, with flows: e.g., it can match out-
going flows with the process that generated them, and with other
device metadata such as the device vendor, model, Android OS
version, and even TLS proxy exceptions. The access to metadata
is a key feature in Lumen that gives us the ability to attribute our
observations to apps, third-party libraries (e.g., ad networks and
analytics services) and even to device vendors. Note that Lumen
does not forward any payload to a remote server for analysis, hence
minimizing the privacy and security risks for the user; and keeping
the network path unmodified.

We point readers interested in Lumen’s architecture to our pre-
vious work [78]. We have made steady improvements to Lumen:
the current version (v2.0, released in October 2017) can process
traffic at over 95 Mbps rate when connected over a WiFi link, with
a battery overhead below 1%.

3.2 The Lumen TLS Proxy

Lumen implements a local TLS interception proxy to analyze en-
crypted flows on the device, with user consent, to detect and report
personal information leakages of apps to the users. Lumen’s local
MITM TLS proxy requests the user to add a self-signed root cer-
tificate (generated at install time) in the system trust store. Lumen
parses network flows and identifies TLS/SSL handshakes, which it
then forwards —along with flow-level meta-information the proxy
requires in order to connect to the server (e.g., IP address, port,
SNI)—to the TLS proxy to set up the proxy connection. While we
are not using the TLS interception facilities of Lumen (e.g., privacy
leakage reporting) for this work, we do collect and analyze stack
traces and error information generated by proxy connection fail-
ures to measure apps’ resistance to MITM attacks in presence of
rogue CA certificates in the trust store. Note that, throughout this
paper, the term “app” refers to a unique app package name.

TLS Proxy Impact on Apps: We try to minimize the side-effects
of our proxy on mobile applications. Since the proxy relies on

Ze.g., Samsung’s KNOX API, present in some Samsung devices, interferes with the
normal behavior of Android’s VPN interface.

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

Android’s native TLS library, which does not support certain pa-
rameters, cipher suites, or TLS extensions, we cannot transparently
proxy all flows. Applications that rely on certificate properties,
extensions, or cipher suites not supported by base Android may
cause proxied connections to fail. Note that we intentionally up-
grade vulnerable SSLv3 [62] connections to the remote server when
connecting to hosts that support newer protocols.

This limits Lumen’s ability to be fully transparent both to the
client app and the remote server. Lumen whitelists apps that it can-
not proxy so that subsequent connections will be directly forwarded
to the destination server. Nevertheless, those failed connections
provide valuable data to identify and study apps implementing
certificate/public-key pinning or CA-certificate bundling, which
are not visible to a passive observer in the network (§ 7).

Collecting Handshake Data: Due to this lack of complete trans-
parency by our TLS proxy, we limit the data collected from proxied
TLS flows to the original “Client Hello” (CH) received from the app,
and the server certificate chain, both of which are unaffected by the
proxy. Furthermore, clients running Lumen version 1.3 (released
April 2017) periodically skip proxying connections to get a full pic-
ture of the untouched TLS handshake without presence of a proxy,
and deployment of security measures such as certificate pinning.
The collected anonymized handshake messages are sent to a
backend server, which parses and extracts relevant information
from the handshake messages using a purpose-built parser that uses
a comprehensive list of cipher suites, extensions, and other param-
eters collected from IANA’s list of TLS parameters [55], RFC drafts,
and other sources like the source code of popular implementations
of TLS and SSL like OpenSSL and GnuTLS. This information allows
us to identify parameters that have been made obsolete, have had
the code representing them in TLS messages repurposed for newer
parameters, or are in active use despite not being standardized yet.
In total, we obtained a map of 349 cipher suites, 34 extensions, 12
application layer protocol negotiation values (ALPNs), 37 elliptic
curves, and 30 signature algorithms and the corresponding codes
representing them in handshake records from these sources.

3.3 Ethical Considerations

Examining user traffic raises ethical issues that we consider
carefully. We ensure data collected for this study only includes
anonymized TLS/SSL handshake messages that are not encrypted
and therefore do not reveal the contents of the user’s Internet traf-
fic. Lumen preserves user anonymity by not uploading any major
browser activity (which we can test without user stimuli), traffic
payload, or any user or device identifiers to our servers. In § 4 we
describe the data collected by Lumen. Our tool only performs TLS
interception with user consent after thoroughly informing the user
about its purpose and implications. We provide user-friendly expla-
nations of the purpose of the tool and the data collection process on
the Google Play listing, through the privacy policy, our project web-
site, and on the app. Additional precautions and considerations are
also detailed in our previous work([78]. Our institutional IRB con-
siders our effort as non-human subjects research—i.e., we analyze
the behavior of software, not people.

A. Razaghpanah et al.

4 DATA OVERVIEW

Between November 2015 and June 2017, more than 5,000 users
from over 100 countries have installed Lumen Privacy Monitor
directly from Google Play. This has allowed us to analyze 1,486,082
TLS connections from 7,258 apps connecting to 34,176 domains
(identified by their SNI) across 250 TCP ports (§ 4.2). We were able
to collect TLS traffic traces for more than 891 unique tuples of
Android SDK version number, device vendor, and model. 3 Further,
we collected 684,209 TLS proxy exceptions associated with 4,268
apps and 10,753 domains.

Mobile apps are regularly updated with new versions to fix bugs,
improve usability, or add new features [20]. It is therefore critical to
study app behavior across several versions. Crowd-sourcing mobile
traffic data allows us to collect traffic for several versions of a given
app. Although our data is sparse in terms of app coverage due to its
user-dependency, we could successfully obtain various app versions
for 28% of the apps and at least 10 versions for 2.7% of the apps.

4.1 App Representativity

To understand the nature of the observed applications, we download
meta-data about each app in our dataset from the Google Play
Store. 3% of the apps in our dataset are paid apps, 85% are free
and 12% are not listed in the Google Play Store. The set of apps
not available on Google Play range from basic Android services to
apps obtained from alternative app stores (e.g., MoboGenie [69]),
removed apps (e.g., Free WhatsDog), and pre-installed apps and
services from a number of mobile OS vendors (e.g., LG, Samsung,
and CyanogenMod among many others). Our monitored apps fall
under 35 different Google Play categories. The two most commonly
seen categories are: Games (16%) and Tools (9%). Excluding pre-
installed services, 40% and 2.4% of the apps in our records have
more than 1M and 100M installs, respectively. Our data covers 87
of the top 100 free apps on Google Play.

4.2 Traffic Statistics

88% of the mobile apps in our dataset communicate with online
services over HTTPS. However, other protocols such as secure
email (42 apps) and Google’s Cloud Messaging service for push
notifications (9 apps) [11, 47] also use TLS. Despite the fact that the
increasing number of apps using TLS seems like a positive trend,
50% of the apps use simultaneously HTTP and HTTPS.

We have found 178 apps opening TLS sessions in non-
conventional TLS ports, including 20 apps using TLS on TCP port
80. A close look at the distribution of TCP ports per app reveals
traffic patterns that resembles of P2P traffic. We have identified
this behavior in apps like Facebook, Skype, the official Tor client
and apps possibly establishing P2P links using WebRTC APIs [94].
Furthermore, we identified 36 mobile apps interacting with other
devices and services hosted on the local network (i.e., they con-
nect to IANA-reserved private IP addresses [61]). The majority of
those apps use proprietary protocols such as Google’s Chrome-
cast clients (TCP:8008 and 8009), Smart-TV remote controllers (e.g.,

3We started collecting the device vendor and SDK version number with Lumen version
1.0.11 (Released in July 2016). We use the SDK version number as a proxy for the OS
version running on the device. The ability to extract the exact OS version has been
included in Lumen version 1.3.

Studying TLS Usage in Android Apps

Android’s TV remote, TCP:6466, and LG TV Plus, TCP:3001), and
apps to remotely access and configure the CPE (e.g., MyFRITZ!App,
TCP:49443).

5 CLIENT-SIDE HANDSHAKE ANALYSIS

We analyze CH messages for each flow and application and analyze
the cipher suite list, the use of TLS extensions, and how third-party
services (e.g., ad networks) use TLS.

5.1 Method: Developing TLS Library
Fingerprints

TLS libraries and OS APIs modify their supported cipher suites
across versions: new cipher suites are added, weaker ones removed,
and the order of their preference changed over time. As a result,
both the set and order of the cipher suites found in CH messages is a
strong signal to identify the TLS library-and its version-used by the
application and reveal their vulnerabilities. Durumeric et al. used
this concept to passively distinguish HTTPS requests generated
from specific web browsers and versions [31].

We first build a corpus of cipher suite list fingerprints paired
with their corresponding OSes and libraries. For that, we use a
custom Android app that opens TLS connections using different
TLS libraries—i.e., Android’s native library and two well-known
third-party TLS libraries, OpenSSL, and GnuTLS—to a server under
our control. We then extract the cipher suite list fingerprint from the
CH message. We run this app on multiple Android phones running
stock Android version 4.0 to version 7.1. We did not test older
versions of Android as Lumen does not support these versions. We
extract two cipher suite lists for each TLS library and OS version: the
default list—i.e., when a TLS connection is set up without explicitly
configuring the cipher suite list—and the supported list—i.e., the list
of all cipher suites, including those not enabled by default, that are
supported by the library on a given Android version.

Our analysis reveals that each TLS library and OS version has
a unique cipher suite list. Additionally, we observe that some An-
droid security patches modify the list of ciphers, but the OS reports
the same OS version number. Figure 1 shows the cipher suite lists
for three OpenSSL versions and three Android OS versions. The
color code represents their order of preference; therefore if a suite
is present in two versions but has different ordering, the fingerprint
will still be different. As an example, the latest Android 7.x (SDK
24 and SDK 25) default cipher suite list has changed significantly
from Android 4.x, removing 26 old and deprecated cipher suites
(including all old SSLv3 and RC4 ciphers), while adding 10 new
cipher suites, including the ChaCha20/Poly1305 family of mobile-
friendly cipher suites which have been widely adopted by Google
in recent years [48)]. Minor revisions for the same library do not
vary much, sometimes, just slightly reordering preferences based
on shifts in adoption, or changes in codes representing cipher suites.
For example, initial cipher suite lists for Android 6.x and 7.x de-
vices showed announcement of temporarily-assigned codes for
ChaCha20/Poly1305 ciphers, while later patches changed those to
the permanent codes assigned after standardization of these ciphers.
For validation purposes, we compare our harvested cipher suite
fingerprints with those available in SSLLabs’s collection of TLS

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

user agent capabilities [77], finding identical fingerprints for those
indexed on SSLLabs.

5.2 TLS Library Usage in the Wild

We use our fingerprint database to match the handshake sequences
passively collected by Lumen. Our fingerprints allow us to eas-
ily distinguish apps that use OS APIs and OpenSSL with default
settings. However, it is harder to distinguish apps that use other
libraries or significantly change the cipher suite list by adding, re-
moving, or changing the preference order of cipher suites; we label
those apps under the “Other/Unclassified” label.

Figure 2 gives a breakdown of libraries and APIs in TLS flows.
According to our results, 84% of app-version combinations use
default settings on OS-provided APIs, and 2.3% of app-versions use
various versions of OpenSSL. We could not match the remaining
13% app-versions to a known library fingerprint. We manually
classified handshake traces for those cases in which we did not
have OS default fingerprints available and study each app on a
case-by-case basis. We provide salient findings and examples for
apps falling in the “others/unclassified” category in the following
paragraphs.

Apps Changing Default Settings: Apps that configure the con-
nections with parameters other than the default ones include Uber,
Facebook, and Microsoft apps (among others). While some of these
apps alter parameters for better security (e.g., Facebook removes
RC4, 3DES, and other vulnerable cipher suites from OpenSSL list
of cipher suites), others do it in a way that arguably makes TLS
connections less secure. For example, all analyzed versions of Black-
Berry Messenger [15], Viber [92], Wire [96], and Jio4GVoice [58]
voice-over-IP (VoIP) use a short list of 1 to 3 cipher suites in TCP-
based TLS connections to some of their servers, none of which
provide forward-secret key exchange algorithms. Such ciphers al-
low a passive observer that records encrypted communications of
these connections and has the ability to access the private keys
of these servers to be able to decrypt all encrypted communica-
tions offline, provided that there are no other encryptions used
on top of TLS. * While this might be impractical for most in-path
attackers, it is a feasible attack vector for nation-state adversaries
capable of both passively collecting large amounts of encrypted
traffic and gaining access to private keys using legal means and
court subpoenas.

One particularly interesting app in our dataset is the Hola VPN
app [53]. Hola uses a P2P scheme to enable VPN-like functionality:
any participating node can act as an egress point for any other
participant. Since it forwards application layer traffic from other
phones to the Internet, the app can have different TLS fingerprints
on the same phone, representing different OS versions and libraries
based on how many other phones are using it as a proxy for their
traffic.

Third-party TLS Library Usage: Apart from OpenSSL, we could
only identify two other third-party libraries that are used in our
data: two apps use GnuTLS in at least one of their versions (VLC
player [93] and SoundCloud) while Firefox and Firefox-derived

4 This does not extend to UDP-based TLS connections of these apps, as we do not
study UDP flows in this paper.

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

A. Razaghpanah et al.

Clpherl
Order 20 40 60 80
OpenSSL 1.0.2k 26 Jan 20174 o o ee o oo eece ecee eece ecee eee eeccccce eccce XXX ece
OpenSSL 1.0.1i6 Aug2014{e @@ eee eeeeecsscsscce eecee . cee oo eee oo oo ece
OpenSSL 1.0.0f 4 Jan 20124 . [L] . . [© . 3 [3
Android 7.x 4 . . . oo 3 oo
Android 5.x 4 . . e oo o 3 3
Android 4.x 4 . o o (X3 3 . o oo .
LIt S St It e S5t S S S SISt S S S S SO [5[0SOt BB S50 50 S L B SO SN St JOL SO e St S S S5 SO S5 [t S5 S S S5 TN S S S5t SOt e S50 N S S SO IS e S S S JOE 5t S50 S S S5t I SOt R S S S LD I It
B Lt D Lt T Ee I P e
BHBBBBBBBZEDBHBEHHILDLLEPPBILBILOBBBIIBILBBBBILBLLBBBHPILBLLIPBHILBLLINBBLIBLLBBBILPLIBOBIINLLBHH
TILTI TILIT ITISTT ITILIT ITILGIIT TILIIT ITISTI ITILIT TILTT
290800000e d0RRRAE BOEE0000BE 0B E000E50BBA000BE 0B E00R00BEAs EBRR0EB0EEHRONEHASERACEEOEEEOEBOBBA0Y
0000000000000 T 0LS0(S0000L500S0000(S00S00000S0,5000000500S8TI00050 ST I000S0LST000SOLSTIEO NSO L5000
no It HDO '@ D0 0@ DO oD D0 0@ DO R0RTWeRO0ROBI WD RO RO TFu'e'DE 0RO IFE DO D
3%ﬂ3%&%gSom%&ﬁggﬁogﬁogﬁﬁﬂﬁogﬁogﬁgaQo%%o%ﬁ%ﬂﬁo%%ogﬁﬂag%o%%o%?%%ﬁo%%ogfggﬁo%%o%%ﬁﬁo%%ogg REIEE388D
DOAPHammPR BAATE P P i = P JP e Q= P P Qi = P 2 QT = P PSR = AP PSR = P P E R = T Z= oo P
muon Do THO0 1 10 6l oo 1T ™ ieo'en 0 o I o000 ol I 100 o0 kol I 1900 10'0/21 10 00 0 02 1900 0 o 1000 0015 10w oo I
B B B OE p TZn AR08 <N nAZnwRc<PnNR OB <<NNNZNORc<®D NANRNOEOT VIXnWBET NZNOET ARSI PnNJnnBcc?)
RECRERR S ESEFETEEU—(FUNQ S S - NS S5 I~ N S5 - C NG S S QU ruNdg EQU - S NSy EQU i NQE QU s N A E R s N QS S
LUEHEuw = EESE2 <0 <02 2 E <0< 2 2E <0l <0 D 2 E <0 <o D 2 E A <0 00 0 o= 6 <00 0 o B < o0 = B L D o E E e <D D DE
ESSER288ET, 82 Po_QoounE_Po_PonnE Qo _BonnE Qo _PonnEl Qo _Bno=a Po Puosa Do Bansa Do BoSE Do BonmnE
= = EepesS rWurdussSsréurydusssryur@usssrduryusssordurdug Orynrdug_orluryu_erlurydy_orWuryisss
gzbgzkEEgggxk;ﬁ$t<ﬁF<ﬁﬂ< ESE S S T E S E g T E S E S E s E S E S S B E S E SIS BT E S E S B E SE <G OES<EI<Zg
EQ, FOEE, PREAGEEE I TSI TO0NE I T2 I T00LE T TSI 00N I T2 ITO0SESE I T2 I TGOFES IR ITGaES I TSI rT0ES TSI ra WS T2 T '00 <
ESOoksCsshk S s RN P EE T EE 8T EE T EE LR EE B YT EE S EE L OS TEE S EEROS S EEEER S EF EEOS EEEE B EE S EE LD
| | X3 nsEnsErTosE ST psEnsEr o sE < SE TS EE S LRSS L SE TS SELSERS S SE U SESh e
[y M Lo s 1 Bt B = o = =, et e =i, o, e = = ot b i, =y s il = R b Eateat, ot o
RBEXDEDRRELBDRLPO 0O EEEC L T ZEHEO N B S EC C e EEEHA D COUGE I COGAL IO THE L O ZED
WPl o XNe WORWAR T BB SLWDBS BB T0R T BG D R0 G QRS IEL B BRI BSRDHRE DS DS DB -
wee ™ oRFoRun HrYracEaiEioinunicirfccnolnRU0RE] HrEPYrEUoWARWARO " Erffa® o frefa@cs
DuB<cuAT < IO0I00RR FECrICrSs BONsC0RRAsErsEr Lot 0ot anES TrrrrrEotan a0l RECATreL ACa SCy S
o . i o e Ot ot e e AV M P P T
=t I IFT oL/ 29720 a | 22 =
S0 A Ta® BEEFALEFWW A5EAGFww FOOF 2Oz OO COrT 8w, Quw S R0ola NS S a0 QIR 08,08 o FF FrRa9
wo w 2o ORI PUCREECII NuygTwnts FuenTvwepts GOIYOIYRZR 08,082 oUsLLS Aoy = 29
IN IH 0OdAd FonTnptd Fopragta 49 2999 49 4950 SonIInFIaFtunfonfor 88 180 ,2HmIum = ==
o [o nP a9 49 a9 39 FE FRon FE FrRon 3,683,830 oPHE2HE 1+ Hagon@o JF, -
of of %) FE FROW FE FRoo L FPRAR 00Q09Qol AF g, Foyy oalmdim B 49 49
a0 | | Fr PP Gobmimo s = 49 4o GF = FE PR
|7 B} == FF e L g P T FE FFQ F 29 39
a9 F a8 295 Q Fr FF
= =
o
o)
a
' P
3
=

Figure 1: Comparison of the TLS cipher-suite lists for Android versions 4.X, 5.X, and 7.X and three different OpenSSL versions.

100K
g
o10K
o
2z 1K
S
& 100
v}
o II IIIIII
y | II--
05 b o> DO N LD L A L Lo Lo o Lo o > >
L N I N N S R I RN NI I N]
g e N OO ARSI
P PP SP S S$ N > RS S I U P
o 0 0 9 9O 9 9 9 ¢ RS T LT ST TS
QXX R R XXX Y & & ¥ Y N RPN ¥ FL S
RSIRCIRCINCENCNCENS @&&@Qe\‘$®@\v®%§§§\o
B N S &
v“v‘\v(\v“v“v‘\é\v“éﬁ\&g\’&\m\@\‘&&‘ RIS
N N N v N O o o 9
SO PEITEILEE
Ny & & o L
FFFSF TS TR S

Figure 2: Rank of TLS libraries in TLS flows (log10-scale).
Most flows are generated by OS-provided APIs with default
settings.

browsers use NSS [71]. There are a number of other apps that
either bundle other TLS libraries we cannot identify, or change the
default parameters: Samsung Internet Browser [81], Chromium-
based browsers, and Dolphin browser [26]. Furthermore, apps like
Twitter, Dropbox, Spotify, and Uber have their own unique cipher
suite lists in order to communicate with first-party domains. Some
games and entertainment app makers (e.g., EA [33], Miniclip [68],
and Rovio [80] games) also have their own unique fingerprints,
which could point to game engine code using other internal libraries
for TLS. Microsoft apps (e.g., Office apps) have their own unique
fingerprints depending on the type of application (e.g., cloud storage
apps vs. Skype), which are in some cases close to OpenSSL default
cipher suite lists.

5.3 The Case for Longitudinal Studies

Most research studies analyze a snapshot of the most popular apps
at a given time. However, mobile apps may evolve and use different
libraries and TLS configurations across app versions to gain control
over their TLS traffic and security guarantees. Our data does not
contain a large enough sample for most apps, with only 2.7% of the

apps having 10 versions or more. This limits our ability to analyze
changes in TLS usage behavior over time across all apps. However,
even within the time-frame of our data, we have found examples of
popular apps evolving their use of TLS. This demonstrates a need
to study apps longitudinally to analyze and evaluate developer deci-
sions over time and to gauge developers’ awareness and experience
with respect to TLS usage. While these popular apps use TLSv1.2 by
default, they mainly differ in their lists of supported cipher suites
and extensions. We now list two examples of such apps.

Twitter: Our data shows that the Twitter app matches OS-default
SDK fingerprints prior to September of 2016. However, since Sep-
tember 2016, while fingerprints of connections it makes to third-
party analytics services (e.g., Crashlytics [22]) still match that of
OS defaults, flows destined for Twitter’s first-party domains have a
different cipher suite list. This list differs from the OS-default one in
two key ways: (1) it deprioritizes ChaCha20/Poly1305 cipher suites,
that are given preference to all other cipher suites in the OS-default
list due to their mobile-friendliness, behind the more traditional
and more widely-supported AES-GCM/SHA family of cipher suites;
and (2) it removed cipher suites that use non-elliptic-curve variants
of the Ephemeral Diffie-Hellman (DHE) key exchange algorithm.
An active TLS scan of mobile.twitter.com using SSLLab’s scan
tool [82] shows this decision to be in line with Twitter’s server-side
support for cipher suites, as it does not support ChaCha20/Poly1305
ciphers, or the non-EC variant of DHE.

Facebook: Facebook and Facebook Messenger have used OpenSSL
to communicate with Facebook servers in all versions that are
present in our data. However, Facebook’s use of OpenSSL has
evolved over time, with newer versions removing weak or un-
supported cipher suites from their default list. Removed ciphers
include Seed, DES, Export, and Camellia families of cipher suites,
with the latest being DES ciphers in March 2016. Facebook also
uses its own versions of HTTP/2 and SPDY in the list of application

Studying TLS Usage in Android Apps

100
bo -
O e ;
CRA . B
75 v o g Ty
(%] B L ’ e
H s IYRRE .. ‘-
= R TS S -
9D 5 VAN e F T i * * *
= iPON* T + e I*
s / N7 * *
2 / TN [="
S TN i N o T
s L&A N\ e ¥]
; al et s K
0

R ;\'7, Qx “n, Q’b Qu /g; @ Q’\ Q% @ ;\Q \x /(7, Q\ Qw Q'b eb‘ /@; QQ)

R I i R e

L S S S S S S
date

GOOGLE GREASE — EXT. MASTER SECRET — - SIGNED CERT. TS PADDING
RENEGOTIATION INFO - = - SESSION TICKET -— ALPN NEXT PROTOC. NEGOTIATION
SERVER NAME % STATUS REQUEST CHANNEL ID

Figure 3: TLS extension usage over time, excluding 14 exten-
sions that are near 100% or 0% across the board.

layer protocol negotiation protocols (ALPN). We discuss ALPNs
in§54.

5.4 TLS Extensions

TLS clients can use extensions to relay support for specific protocol
features, like supported signature algorithms and supported elliptic
curves, or to provide additional information like the requested host-
name or the application layer protocols supported. This mechanism
allows TLS to add new connection parameters without changing
the base protocol. In total, we see 34 different extensions being
used. Figure 3 shows use of 11 such extensions in TLS flows over
time. We do not include ones that are present in more than 99%
of the connections (e.g., elliptic curves extensions and signature
algorithms), as well as marginal ones that do not appear in more
than 1% of the flows (e.g., pre-shared key exchange modes extension
and draft TLSv1.3 extensions). We describe notable cases below.

Google GREASE: Google started drafting Generate Random Ex-
tensions And Sustain Extensibility (GREASE) in 2016 [24], as a way
of testing TLS servers for potential interoperability issues arising
from Google’s use of non-standard TLS parameters and extensions.
To do this, they insert a set of non-standard and unassigned identi-
fication codes in various places (e.g., cipher suites and extension
list) in the CH to see whether the servers ignore them, or terminate
the connection due to poor implementation. Any apps that use An-
droid’s default TLS libraries have GREASE parameters in their CH
records. Our data shows GREASE usage in TLS extensions going
from 0% of TLS flows in October 2016, to over 65% of the total TLS
flows in June of 2017. We will revisit GREASE in § 9.

Application Layer Protocol Negotiation (ALPN): The ALPN
extension (standardized in 2014) allows clients to negotiate the next
protocol used on top of TLS (e.g., HTTP/2 or HTTP/1.1). Using
ALPNs in TLS handshakes allows the negotiation of the next proto-
col to piggy-back on the TLS handshake, saving a few round-trips
after the TLS connection has been established, which in turn in-
creases responsiveness in mobile apps and decreases load times
of mobile web pages. Overall, our dataset shows wide adoption
of this extension, from appearing in 28% of all flows in October
of 2015, to 83% in June of 2017. This indicates that more mobile
apps supporting multiple application layer protocols could now

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

Flow count
1000000
750000
500000
. . 250000
__
A{‘D

3 =z 2
g = =

App/version pairs
>

SN
Q\ & &
& <& N L \ g & 9
~2/‘<\ ® T g @ /\/\Q oY ®QQ/ %‘8
NI
S
&

Figure 4: Application layer protocol support, negotiated via
ALPN extension.

establish connections with servers faster. There are 15 ALPN values
standardized by IANA (e.g., HTTP/1.1, HTTP/2, and SPDY), and
we have identified 10 ALPN values used by our corpus of mobile
apps. Of those 10, 6 are not standardized yet by IANA with 420
app-versions using them.

Figure 4 shows the adoption of ALPNs across app-versions. An-
droid’s OS APIs enable HTTP/1.1 (and more recently, HTTP/2)
by default for apps using internal APIs for HTTPS connections,
which explains the high percentage of app-versions (75.99%) and
flows (82.77%) supporting HTTP/1.1. Google apps (e.g., Chrome
and Google Maps) announce support for HTTP/2 and SPDY/3.1
as well as HTTP/1.1, with 39.27% of app-versions and 42.87% of
flows announcing support for HTTP/2 and 33.26% of app-versions
and 15.52% of flows supporting SPDY/3.1. Additionally, 34 app-
versions from Google use grpc-exp [50], a Remote Procedure Call
protocol, to communicate with its public announcement servers
(e.g., personal safety and emergency assistance, and phone spam
protection) as well as Google’s Federated Learning [67] machine
learning servers (e.g., Google Keyboard predictions and learning
data collection).

Facebook apps use their own custom versions of HTTP/2 and
SPDY/3.1, as denoted by http2-fb and spdy/3.1-fb-0.5, while
Syncthing, a file synchronization app, uses an open-source protocol
called Block Exchange Protocol (BEP [85]).

5.5 Third-party Services

Mobile apps may embed third-party libraries in their source-code
to add features such as bug reporting, analytics, and support ads in
their apps. Examples of these libraries are Crashlytics [22], Google
Analytics [44], Flurry [40], and Appsflyer [10]. All major advertise-
ment services and analytics APIs with the exception of Facebook
Graph API [37] use OS-default APIs with default settings across
the board. This is also true of apps like Twitter that use different
TLS configurations for TLS connections that are made to destina-
tions other than those related to third-party services. The most
significant exceptions are the Facebook Graph API—which uses
OpenSSL, similar to all Facebook-related apps, and the Sky API
(related to SkyDrive). Finally, third-party libraries like Crashlytics
allow for certificate pinning in their APIs, even when the app using
these APIs does not necessarily pin its own certificates. We discuss
certificate pinning in more depth in § 7.4.

To sum up, this analysis shows that app developers may not
have much control on how third-party libraries connect to on-line

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

services over TLS, thus adding diversity and complexity to TLS
usage within a single app.

6 TLS MISCONFIGURATIONS AND
VULNERABILITIES

In this section, we study weaknesses in TLS implementation by
looking at presence of weak cipher suites and vulnerable protocol
versions in the TLS handshakes.

6.1 SSLv3 Usage

TLS clients can announce support for a range of protocol versions
by setting the TLS record layer version to the lowest supported
and the CH version to the highest supported version [25]. Android
SDK versions 23 (Android 6.0) and newer do not announce support
for SSLv3 by default, while older versions (Android 5.1 and older)
do so. Android 5.1 introduced measures to prevent downgrade
attacks, even if apps announce support for SSLv3 [8, 70]. This
means that apps using default Android TLS libraries running on
Android versions lower than 5.1 will be vulnerable to downgrade
attacks. We also see 31 app-versions of 24 unique apps announcing
support for SSLv3 despite running on devices that do not announce
it by default, possibly due to developer error. Among them are the
most recent versions of mobile games made by EA Games [33] (e.g.,
FIFA Mobile, Madden NFL Mobile, etc.) with hundreds of millions
in combined installs.

6.2 Weak Cipher Suites

It is well known that server-side support of weak and vulnerable
ciphers is insecure and should be avoided [51, 63, 101]. Despite
the fact that TLS/SSL protocols use transcript hashes to ensure
the integrity of handshake, a recent attack, named SLOTH [13],
makes it possible for a powerful adversary to downgrade a con-
nection to any cipher suite advertised by the client. This means
that announcing support for weaker cipher suites by clients can
expose them to downgrade attacks. Although sometimes the mere
presence of certain weak ciphers (e.g., RC4) in the cipher list does
not necessarily mean that the app is vulnerable, the best way of
preventing attacks is by disabling weaker ciphers entirely.

Looking at server hello messages reveals that cipher suites cho-
sen by the servers are strong across the board even when weaker
ciphers are announced by the client. However, since an active scan
of the servers at the time of each handshake is not available to us,
we can not confirm whether servers also supported these vulnera-
ble cipher suites. Below we list the most concerning cases of weak
ciphers announced by apps.

Null Ciphers: Null ciphers provide no encryption and, when used,
allow data to be sent in the clear, making them not secure by defi-
nition since an in-path adversary, under certain circumstances, can
perform a down-grade attack to force a misconfigured client app
and server to use them and then eavesdrop on their non-encrypted
communications. They should always be disabled and never used
in production settings. Despite this, 32 app-versions of 19 unique
apps leave them enabled. Current versions of Tuneln Radio [88] and

A. Razaghpanah et al.

@
S

12}

S

o

g 60

5

= 40 RC4 Ciphers

©

k]

* 20

N S & N B
6/@ o }\(L%/Q Q}q’ &£ &> & e S Q)/QQ’ @/@ Q}}\Q N NS ,\/&«/@,\S /\S" £

S oS S S S S S S S S S S S S S S S S S S S
B S o L e e S L S S A

date

Figure 5: A temporal view of RC4 cipher usage in our data.
Our data shows a decline in use of RC4 since February 2015
when RC4 was announced vulnerable.

K-9 Mail [59], both with millions of installs, have these ciphers en-
abled. Another notable example is the security-focused VPN client
F-Secure Freedome VPN [36].

Anonymous Ciphers: Some cipher suite lists contain anonymous
ciphers that do not provide server authentication. When these ci-
pher suites are used (e.g., through a down-grade attack), they leave
the client vulnerable to MITM attacks as the server side can be
impersonated by an in-path adversary due to this lack of authenti-
cation. We find 32 app-versions of 19 unique apps that announce
these ciphers along with other non-anonymous ciphers. Examples
include most recent versions of Super Mario Run [83] (with tens of
millions of installs), and, once again, Tuneln Radio.

Export-grade Ciphers: Export-grade, or “Export40” ciphers, are
a family of old cipher suites that, due to old US regulations, use key
lengths of 40-bits or shorter to be deemed legal for export to foreign
countries (this is no longer the case). The short crypto key length in
these cipher suites makes them unsuitable for use. Older versions of
Android supported Export40 ciphers, which makes apps running on
them vulnerable to the FREAK attack [49]. In total we see examples
of 50 app-versions announcing these cipher suites on OSes that do
not announce support for them by default. Apps like Tiffany Alvord
Dream World [87], a children’s game with in-app purchases that
has over one million installs, uses a poorly configured OpenSSL
library that enables a variety of weak ciphers, including Export40
family of ciphers.

RC4 Ciphers: Multiple attacks targeting RC4 were found in recent
years, leading app vendors and TLS servers to drop support for it as
per RFC-7465 [76]. Android and Google products have also dropped
support for these ciphers, which caused a drop in the number of
RC4 ciphers announced in TLS flows in our data (Figure 5). Yet,
apps that use OS-default TLS settings still announce support for
these cipher suites when running on Android versions 5.1 and older.
Moreover, 872 app-versions of 311 unique apps announce support
for them despite running on newer versions of the OS that have
removed these cipher suites from their default cipher lists.

7 CERTIFICATE ANALYSIS

To better understand how certificates and public keys are utilized
in servers used by mobile apps, we analyze server certificates and
apps use of different certificate verification methods.

Studying TLS Usage in Android Apps

Root Certificate Authority Count
Google Internet Authority G2 1990
Symantec Class 3 Secure Server CA - G4 1688
Go Daddy Secure Certificate Authority - G2 1675
COMODO RSA Domain Validation Secure Server CA 1549
DigiCert SHA2 High Assurance Server CA 1326

Table 1: Top 5 most popular root CAs in our dataset, sorted
by the number of certificates signed by each.

7.1 Server Certificate Key Sizes

In order to have secure server side authentication, the server’s
public key has to be of a size that is not easily factorizable. RSA
keys with 1024 bits of length or more satisfy this requirement,
although NIST recommends use of RSA keys of at least 2048 bits
of length [12], or EC keys that are at least 256 bits long. Note that
an EC key length of 256 bits provides similar security as a 3072-bit
RSA key. Our data shows that out of 21,189 total certificates, 99%
have key sizes that provide security that is equivalent to or better
than a 2048-bit RSA key (or 256-bit EC key), as recommended by
NIST [12], while 0.7% have lower-size keys.

7.2 Root Certificate Authorities

Table 1 shows the top 5 CAs signing the largest number of certifi-
cates in our dataset. Google Internet Authority G2 signs the largest
number of certificates, all of which belong to Google and its ser-
vices and apps. This is to be expected due to the number of Google
apps and services installed on Android devices. The rest of the top
CAs differ from previous observations of TLS server certificates on
the Internet as a whole [91]. This shows that some CAs are more
relevant in the mobile ecosystem. For example, Symantec Class 3
Secure Server CA is used to sign certificates for domains belonging
to Amazon, Twitter, and Yahoo, which have different domains for
different popular apps and in-app APIs.

7.3 Self-signed Certificates

Mobile apps can perform their own certificate verification, which
allows them to use certificates not signed by a system-trusted CA.
Some of the certificates we encounter are signed by unknown CAs
or are self-signed. We see a total of 166 self-signed certificates that
are not known trusted root CA certificates. Notable examples of
apps using these certificates include apps created by the Russian
game developer Zeptolab [100] which use the internal Zeptolab
CA. Similarly, some Samsung apps use self signed certificates to
communicate with Samsung’s push notification servers, and apps
made by the Russian technology company Yandex [99] use an in-
ternal Yandex CA. While this practice requires these apps to either
pin their server certificates in the app or bundle their own CA cer-
tificates, some apps simply do not perform the necessary checks
to ensure the validity of certificates and to properly authenticate
servers.

Lumen cannot determine if these apps use proper certificate
pinning: we do not replace self-signed certificates with different
self-signed certificates as this might break applications performing
pinning. We also cannot replace self-signed certificates with cer-
tificates signed by Lumen, as Lumen signed certificates are system

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

trusted (which these self-signed certificates are not); performing
these substitutions could open up users to MITM attacks.

Other examples of apps using self-signed certificates include
apps used to control Chromecast and Android TV devices that
communicate with those devices on the local network. Chromecast
certificates have a random UID as Common Name, while Android
TV certificates have Common Name strings that include the TV’s
internal code name, device name, and an ID value (anonymized
here as xxxxx):

atvremote/fugu/fugu/Nexus Player/xxxxx

7.4 Certificate Pinning and CA Bundling

We analyze whether mobile applications or their third-party li-
braries use certificate pinning or internal CA certificate stores to
protect themselves against TLS interception attacks. If an applica-
tion uses certificate pinning or an internal CA store, it will abort
the proxy connection by sending a TLS alert, which causes the An-
droid TLS library on the proxy-side to throw an exception, which
contains the error strings generated by the Android C library rep-
resenting the cause of failure. We mapped those exceptions to
their actual cause by replicating each scenario in an app under
our control and testing the APIs. We focus on detecting two spe-
cific Java exceptions that reveal more interesting aspects of the
apps: CERTIFICATE_UNKNOWN (i.e., the app implements certificate
pinning) and UNKNOWN_CA (i.e., the app performs CA bundling). We
exclude other Java exceptions related with other TLS events (e.g.,
due to TLS version incompatibilities, timeouts, or use of expired
certificates) as they are less relevant to the apps. We limit our anal-
ysis to apps running on devices with an Android SDK version <24
(Android 7.0) as from that version Google has made it mandatory
for apps to specify that they want to trust user-installed CA certifi-
cates like the ones used by Lumen (§ 2). We furthermore limit our
analysis to applications for which we have at least three recorded
exceptions, to prevent short-term problems (e.g., CA certificate re-
moval during proxy operation, etc.) to show up in our analysis and
to minimize the false positive rate. Thus the numbers below are
lower-bound approximations.

Cert. Pinning and CA Bundling by Applications: Among the
150 apps that implement certificate pinning, we find 16 pre-installed
Google services along with apps like Twitter, Facebook, Dropbox,
Instagram, WhatsApp, Uber, 32 finance apps including PayPal fam-
ily of apps (e.g., Venmo, Braintree, and PayPal), and banking apps
like Chase, Capital One, Bank of America, and BBVA. We also found
apps like Facebook, Skype, Google apps (e.g., Photos and Voice),
and 7 finance/banking apps (e.g., BillMo [14]), implementing CA
bundling. However, we did not observe either CA bundling or cer-
tificate pinning in 271 other finance/banking apps.

Cert. Pinning and CA Bundling by Third-party Services: The
research literature provides ample evidence of private information
leakage by mobile advertising and tracking services [39, 78, 79, 90].
Therefore, these services have an incentive to prevent TLS intercep-
tion which can expose their activities. For example, Crashlytics [22],
a tracking and analytics library owned by Google and used by thou-
sands of apps in our dataset, provides support for certificate pinning
in their SDK [23]. However, only 9 apps, including Uber and Twitter,

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

. Cert. CA
Scenario - .
pinning bundling
apps connecting to first parties 150 [2.0%] 52 [0.7%]
apps connecting to third parties 94 [1.3%] 20 [0.3%]

Table 2: Number of apps pinning certificates or bundling
CAs when connecting to first- and third-party destinations.
Total number of apps: N =7,258

enabled this feature. We have identified 86 apps pinning certificates
when connecting to 15 third-party services including Flurry [40],
Localytics [64], and Facebook Graph API [37]. Table 2 summarizes
the results of our analysis.

7.5 Other Observations

Certificates have a finite validity duration and can be trusted during
that time. However, we observe 11 instances of unique applications
using expired certificates. This includes popular apps like AliEx-
press Shopping App [1] and Any.do [9] who use expired certificates
when connecting to their own domains.

8 RELATED WORK

A significant fraction of previous research efforts used passive [56]
and active measurements and network scanners like Zmap [32] to
make steady progress in understanding the PKI ecosystem [27, 30,
34, 84, 84, 91] and the adoption of SMTP (e-mail) security exten-
sions such as STARTTLS and SPF [28]. Active measurements also
allowed studying the scale and impact of TLS vulnerabilities like
Heartbleed [29], the presence of RSA keys in end-hosts [52] and
how online services and vendors performed certificate revocation
in the aftermath of the vulnerability disclosure [51, 63, 101]. Active
measurements via online advertising campaigns have also studied
TLS proxy deployment in the wild [54, 75]. This study, instead,
analyzes Android TLS client behavior.

Mobile TLS and Android TLS Support: Previous studies address-
ing the use of TLS by Android apps and Android’s native TLS sup-
port only scratched the surface of the problem. Vallina-Rodriguez et
al. [89] revealed bloated root stores on devices from specific OS ven-
dors, including ISP-sponsored mobile devices. Georgiev et al. [41]
used white and black box techniques to detect vulnerabilities in the
certificate validation logic in a small number of Android apps and
third-party libraries like Google’s AdMob [43] and PayPal.

Fahlet al. [38] used static analysis on 13,500 popular free Android
apps and found that 8% of apps are vulnerable to MITM attacks.
Due to the inherent limitations of static analysis, they also manually
tested 100 apps using a dedicated testbed with an in-path MITM
proxy. Our study increases the number of studied apps in real net-
work conditions by 80x, thus providing a more global picture of TLS
use by Android apps. Durumeric et al. [31] used CH fingerprints
to measure traffic from major browsers and popular interception
products. Finally, Wei et al. [95] surveyed HTTPS implementation
by Android apps and previous research studies, and found sig-
nificant differences between the theoretical usage of HTTPS and
its implementation by app developers, due to improper developer
practices, server misconfiguration, lacking documentation, flaws in
libraries, the complexity of the TLS PKI system, and lack of end-user
knowledge.

A. Razaghpanah et al.

9 DISCUSSION

So far, this study has provided a complex and nuanced picture of the
diverse (and sometimes incorrect) ways in which Android apps use
TLS. We now discuss the implications of our findings, proposing
solutions to mitigate the issues found, and discussing Google’s role
as the platform provider.

Outdated OS TLS Library: Our study revealed that the vast ma-
jority of Android apps rely on default OS libraries, using the default
configuration to establish TLS connections. As a result, apps are
limited to the security guarantees of the OS version that they run
on. This indicates that most developers trust the OS to provide them
with a secure library with secure default configurations. While this
approach is reasonable for most use-cases, it does not guarantee
security unless the OS itself stays up to date. In Android, the TLS
library is part of the operating system and can only be updated
with an OS update. This is especially concerning given that 84%
of app-versions use Android’s default TLS libraries and real-world
Android version adoption data released by Google suggests 61.7% of
devices still run old and outdated versions of Android (e.g., Android
5.0 and older).

We propose two remedies: The optimal case would be for Google
to devise and enforce a security update policy for all device vendors,
which obligates them to update their devices with the latest security
patches in a timely fashion for a reasonable amount of time after
release. The alternative is to separate the TLS libraries from the
core OS so that they can be updated separately. Google has taken
this approach before, e.g., with Google Play Services which allows
apps to access Google APIs such as Maps and Drive.

CA Certificates and Trust Stores: Trusting CA certificates
present in the OS-provided trust store has many of the downsides of
using OS-default libraries: updates (addition of new CA certificates,
revocation of untrusted CAs, etc.) are also tied to OS updates. More-
over, our previous work [89] has revealed substantial differences
across Android trust stores: devices produced by certain vendors
contain certificates that are not present elsewhere, some of which
are dubious CA certificates that could be used to perform MITM
attacks by an in-path adversary. As a result, some apps resort to
pinning certificates and bundling their own CA trust stores which,
when done correctly, is a good security measure against MITM
attacks but can be problematic when implemented poorly. Apps
that use these methods need to implement their own validation and
verification methods, as there are no default API calls to do so in
those circumstances, which can in turn cause apps to be less secure
due to developer inexperience. This practice is not common among
apps in our data (< 2% of apps), but we have observed examples of
its poor implementation: e.g., a popular recovery management app
with root privileges downloads a CA bundle in the clear, making it
vulnerable to MITM attacks. °

Control Over Library Settings: Android only allows a limited
amount of customization of TLS settings. Apps can set the SNI, the
list of supported cipher suites, and supported protocol versions.

SWe reached out to the developers of the app to notify them of the vulnerability in
June 2017, but have not heard back as of October 2017.

Studying TLS Usage in Android Apps

While this covers the needs of many apps, there are apps that re-
quire setting TLS features that are not exposed by the Android
APL It currently is, for example, impossible to set the ALPN ex-
tension value although it is supported by Android’s internal TLS
library. As a result, apps that need to negotiate a specific ALPN
during handshake (e.g., Facebook), are essentially forced to bundle
a different TLS library altogether. The app developer will have to
keep their bundled TLS library up-to-date and ensure its proper
configuration, as failing to do so will make their TLS communica-
tions vulnerable. Giving more configuration and control options
to app developers, especially for TLS extensions, would remove
the need of apps to bundle TLS libraries and potentially becoming
less-secure as a result.

Education and Guidelines: TLS is a complex protocol with many
different parameters that need to be considered carefully in order
to make TLS communication secure. App developers need to be
educated on how to configure and use it correctly. The availability
of a default API with reasonable and secure default configuration
helps, but without implementation guidelines and security best-
practices, app developers who are less familiar with the protocol
are more likely to unintentionally make poor decisions. To aid app
developers in securing their TLS flows, Google has released an open
source tool for TLS testing and troubleshooting [73].

Additionally, even with up-to-date and configurable default li-
braries, it is inevitable that some developers will bundle other TLS
libraries with their apps and therefore have to stay up-to-date
on library versions and vulnerability mitigations. Companies like
Microsoft and Facebook who can dedicate sufficient resources to
security are more likely to maintain secure use of third-party TLS
libraries, while smaller developers might not be able to do so. In
the past Google has issued a security advisory warning develop-
ers about using a vulnerable version of GnuTLS and deployed a
detection algorithm to warn developers about its presence in their
apps. That, combined with their introduction and use of GREASE to
ensure proper server-side TLS implementation and ease of protocol
expansion in the future, are steps in the right direction showing
their willingness to improve the state of TLS in Android, but more
work is needed.

10 CONCLUSIONS AND FUTURE WORK

There has been an increase in concerns over privacy, security, and
encryption in recent years; and with emergence of reports of wide-
spread Internet surveillance and attacks on user privacy, there has
been a push to encrypt all Internet traffic. That, combined with the
surge in use of mobile apps for sensitive applications (e.g., bank-
ing and e-commerce) and purposes that go beyond traditional web
services (e.g., P2P communications and IoT activities) in the past
decade, has resulted in the increasing reliance of apps on TLS for
encrypted online communications, making it imperative to ensure
its implementation in mobile apps remains secure.

We demonstrated that it is possible to identify most mobile TLS
traffic by the cipher suite list, providing an unprecedented view
of TLS usage in Android in the wild, and at scale, using data col-
lected by Lumen, which we have made available to the public. We
showed that most apps use default TLS libraries, and are vulnerable
to attacks resulting from running on outdated Android OS versions.

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

We also uncovered diverse ways in which apps use default and
third-party TLS libraries, and found examples of widely-used apps
with alarming vulnerabilities and weaknesses in their implementa-
tion, including announcement of null ciphers and anonymous key
exchange methods. We found certificate pinning and CA bundling
to be almost testimonial and mainly limited to apps developed by
larger companies, and showed that the use of TLS in apps can
change over time by providing examples of popular apps evolving
over different versions.

We concluded our study with a discussion on the state of An-
droid TLS, and provided suggestions to improve the status quo and
remedy some of the issues associated with Android’s implemen-
tation of TLS. As future work, we plan to expand our methods in
order to study apps’ resilience to different types of attacks, and to
test their quality of certificate verification via active measurements.
We would also like to combine our data with active server-side
measurements to explore how mobile app servers are configured
to use TLS, and whether we see a difference between them and
servers serving web content or other services leveraging TLS.

11 ACKNOWLEDGMENTS

This project is funded by the NSF grants CNS-1564329, CNS-
1528156, CNS-1350720, and the Data Transparency Lab Grants
(2016). The authors would like to acknowledge Eduardo Acha and
Prof. Alejandro Hevia (Universidad de Chile) for sharing their list
of vulnerable cipher suites. Any opinions, findings, conclusions, or
recommendations expressed in this paper are those of the authors
and do not reflect the views of the funding bodies.

REFERENCES

[1] AliExpress Shopping App 2017. (2017). https://play.google.com/store/apps/
details?id=com.alibaba.aliexpresshd

[2] ALPN Status 2017. https://github.com/http2/http2-spec/wiki/ALPN-Status.
(2017).

[3] S.Anand, M. Naik, M.J. Harrold, and H. Yang. 2012. Automated Concolic Testing
of Smartphone Apps. In Proc. of the International Symposium on the Foundations
of Software Engineering (FSE).

[4] Android 6.0 Changes 2015. https://developer.android.com/about/versions/
marshmallow/android- 6.0-changes.html. (2015).

[5] Android Developer Reference: KeyChain 2017. https://developer.android.com/
reference/android/security/KeyChain.html. (2017).

[6] Android Developer Reference: KeyStore 2017. https://developer.android.com/
reference/java/security/KeyStore.html. (2017).

[7] Android Developer Training - Security with HTTPS and SSL 2017. https:
//developer.android.com/training/articles/security-ssLhtml. (2017).

[8] Android Explained: Android 5.1 Changelog 2017. https://www.androidexplained.
com/android-5-1-changelog/. (2017).

[9] Any.do 2017. https://play.google.com/store/apps/details?id=com.anydo. (2017).

[10] Appsflyer 2017. https://www.appsflyer.com/. (2017).

[11] A. Aucinas, N. Vallina-Rodriguez, Y. Grunenberger, V. Erramilli, K. Papagiannaki,
J. Crowcroft, and D. Wetherall. 2013. Staying Online While Mobile: The Hidden
Costs. In Proc. ACM Int. Conference on emerging Networking EXperiments and
Technologies (CONEXT).

[12] Barker, Elaine and Roginsky, Allen. 2015. Transitions: Recommendation for
Transitioning the Use of Cryptographic Algorithms and Key Lengths. NIST Spe-
cial Publication 800-131A. (2015). http://dx.doi.org/10.6028/NIST.SP.800-131Ar1

[13] K. Bhargavan and G. Leurent. 2016. Transcript Collision Attacks: Breaking
Authentication in TLS, IKE, and SSH. In Proc. Network and Distributed System
Security Symposium (NDSS).

[14] BillMo Money Transfer and Wallet 2017. https://play.google.com/store/apps/

details?id=com.billmo.android. (2017).

BlackBerry Limited. 2017. BBM - Free Calls and Messages. https://play.google.

com/store/apps/details?id=com.bbm. (2017).

[16] D.Boneh, S. Inguva, and I. Baker. 2017. SSL Man in the Middle Proxy. https:
//crypto.stanford.edu/ssl-mitm/. (2017).

[17] BoringSSL 2017. https://boringssl.googlesource.com/boringssl/. (2017).

[15

https://play.google.com/store/apps/details?id=com.alibaba.aliexpresshd
https://play.google.com/store/apps/details?id=com.alibaba.aliexpresshd
https://github.com/http2/http2-spec/wiki/ALPN-Status
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
https://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
https://developer.android.com/reference/android/security/KeyChain.html
https://developer.android.com/reference/android/security/KeyChain.html
https://developer.android.com/reference/java/security/KeyStore.html
https://developer.android.com/reference/java/security/KeyStore.html
https://developer.android.com/training/articles/security-ssl.html
https://developer.android.com/training/articles/security-ssl.html
https://www.androidexplained.com/android-5-1-changelog/
https://www.androidexplained.com/android-5-1-changelog/
https://play.google.com/store/apps/details?id=com.anydo
https://www.appsflyer.com/
http://dx.doi.org/10.6028/NIST.SP.800-131Ar1
https://play.google.com/store/apps/details?id=com.billmo.android
https://play.google.com/store/apps/details?id=com.billmo.android
https://play.google.com/store/apps/details?id=com.bbm
https://play.google.com/store/apps/details?id=com.bbm
https://crypto.stanford.edu/ssl-mitm/
https://crypto.stanford.edu/ssl-mitm/
https://boringssl.googlesource.com/boringssl/

CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

(18]

[19]

&
&

[29

(30]

(31]

&
=)

'S
=

®
=

Changes to Trusted Certificate Authorities in Android Nougat
2016. (2016). https://android-developers.googleblog.com/2016/07/
changes-to-trusted-certificate.html

J. Clark and P. van Oorschot. 2013. SoK: SSL and HTTPS: Revisiting past
challenges and evaluating certificate trust model enhancements. In Proc. IEEE
Symposium on Security and Privacy (S&P).

S. Comino, F. M. Manenti, and F. Mariuzzo. 2016. Updates Management in
Mobile Applications. iTunes vs Google Play. CCP Working Paper.

C. Conlon. 2011. Installing an Alternate SSL Provider on Android. http://www.
linuxjournal.com/article/10896. Linux Journal 2011, 205 (2011), 5.

Crashlytics 2017. http://www.crashlytics.com. (2017).

Crashlytics API 2017. Crashlytics APL. https://docs.fabric.io/javadocs/
crashlytics/2.3.2/com/crashlytics/android/Crashlytics.html. (2017).

D. Benjamin. 2016. Applying GREASE to TLS Extensibility. IETF Draft. (2016).
https://tools.ietf.org/html/draft- davidben-tls-grease-01

T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Standards Track). (2008). https://tools.ietf.org/html/
rfc5246

Dolphin Browser 2017. https://play.google.com/store/apps/details?id=mobi.
mgeek. TunnyBrowser. (2017).

Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J.A. Halderman. 2015. A
Search Engine Backed by Internet-Wide Scanning. In Proc. ACM Conference on
Computer and Communications Security (CCS).

Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein, N. Lidzborski, K.
Thomas, V. Eranti, M. Bailey, and J.A. Halderman. 2015. Neither Snow Nor Rain
Nor MITM...: An Empirical Analysis of Email Delivery Security. In Proc. ACM
Int. Measurement Conference (IMC).

Z. Durumeric, J. Kasten, D. Adrian, J.A. Halderman, M. Bailey, F. Li, N. Weaver,
J. Amann, J. Beekman, M. Payer, and V. Paxson. 2014. The Matter of Heartbleed.
In Proc. ACM Int. Measurement Conference (IMC).

Z. Durumeric, J. Kasten, M. Bailey, and J.A. Halderman. 2013. Analysis of the
HTTPS Certificate Ecosystem. In Proc. ACM Int. Measurement Conference (IMC).
Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey,
J.A.Halderman, and V. Paxson. 2017. The Security Impact of HTTPS Interception.
In Proc. Network and Distributed System Security Symposium (NDSS).

Z. Durumeric, E. Wustrow, and J.A. Halderman. 2013. ZMap: Fast Internet-wide
Scanning and Its Security Applications.. In Proc. USENIX Security Symposium,
Vol. 2013.

EA Games 2017. (2017). http://www2.ea.com/android

EFF. 2017. The EFF SSL Observatory. https://www.eff.org/observatory. (2017).
N. Elenkov. 2014. Android Security Internals: An In-Depth Guide to Android’s
Security Architecture. No Starch Press.

F-Secure Freedome VPN 2017. (2017). https://play.google.com/store/apps/
details?id=com.fsecure.freedome.vpn.security.privacy.android

Facebook Graph API 2017. https://developers.facebook.com/docs/graph-api.
(2017).

S.Fahl, M. Harbach, T. Muders, L. Baumgértner, B. Freisleben, and M. Smith. 2012.
Why Eve and Mallory Love Android: An Analysis of Android SSL (in)Security.
In Proc. ACM Conference on Computer and Communications Security (CCS).
Federal Trade Commission. 2016. https://
www.ftc.gov/news-events/press-releases/2016/06/

mobile-advertising- network-inmobi- settles- ftc- charges-it-tracked. (2016).
Flurry. Yahoo Mobile Developer Suite 2017. http://www.flurry.com/. (2017).
M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov. 2012.
The Most Dangerous Code in the World: Validating SSL Certificates in Non-
browser Software. In Proc. ACM Conference on Computer and Communications
Security (CCS).

GnuTLS Transport Layer Security Library 2017. http://www.gnutls.org/. (2017).
Google. 2017. AdMob by Google. https://www.google.com/admob/. (2017).
Google. 2017. Google Analytics. https://analytics.google.com. (2017).

Google. 2017. HTTPS at Google. (2017). https://www.google.com/
transparencyreport/https/

Google. 2017. Nexus Help: Check & update your Android version. (2017).
https://support.google.com/nexus/answer/4457705

Google Cloud Messaging 2017. Google Cloud Messaging. http://developer.
android.com/google/gem/index.html. (2017).

Google Security Blog. 2014. (2014). https://security.googleblog.com/2014/04/
speeding-up-and-strengthening-https.html

M. Green. 2017. Attack of the week: FREAK (or factoring the NSA for fun
and profit). (2017). https://blog.cryptographyengineering.com/2015/03/03/
attack-of-week-freak-or-factoring-nsa/

gRPC. 2017. A high performance, open-source universal RPC framework. (2017).
http://www.grpc.io/

M. Hastings, J. Fried, and N. Heninger. 2016. Weak Keys Remain Widespread in
Network Devices. In Proc. ACM Int. Measurement Conference (IMC).

N. Heninger, Z. Durumeric, E. Wustrow, and J.A. Halderman. 2012. Mining Your
Ps and Qs: Detection of Widespread Weak Keys in Network Devices.. In Proc.
USENIX Security Symposium.

[53]
[54]

[55

[56
[57

[58]

[59

[60]

[61

[62

[63]

[64
[65

[66
[67]

[68
[69
[70

[71

[72

[73

[74]

[75

[76

[77

[78

[79]

[80
[81

[82
[83

[84

[85

[86]

[87

[88

A. Razaghpanah et al.

Hola VPN 2017. (2017). https://play.google.com/store/apps/details?id=org.hola
L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson. 2014. Analyzing Forged SSL
Certificates in the Wild. In Proc. IEEE Symposium on Security and Privacy (S&P).
IANA. 2017. Transport Layer Security Parameters. (2017). https://www.iana.
org/assignments/tls-parameters/tls-parameters.xhtml

ICSI 2017. ICSI Certificate Notary. https://notary.icsi.berkeley.edu. (2017).

M. Ikram, N. Vallina-Rodriguez, S. Seneviratne, M. A. Kaafar, and V. Paxson.
2016. An Analysis of the Privacy and Security Risks of Android VPN Permission-
enabled Apps. In Proc. ACM Int. Measurement Conference (IMC).

Jio4GVoice 2017. https://play.google.com/store/apps/details?id=com.jio.join.
(2017).

K-9 Mail 2017.
(2017).

K. Conger. 2016. Apple will require HTTPS connections for iOS
apps by the end of 2016. (2016). https://techcrunch.com/2016/06/14/
apple-will-require-https-connections-for-ios-apps-by-the-end-of-2016/

D. Karrenberg, Y. Rekhter, E. Lear, and G. Jan de Groot. 1996. Address Allocation
for Private Internets. RFC 1918. (Feb. 1996). https://doi.org/10.17487/rfc1918
A. Langley, A. Pironti, R. Barnes, and M. Thomson. 2015. Deprecating Secure
Sockets Layer Version 3.0. RFC7568 (2015).

Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mislove, A.
Schulman, and C. Wilson. 2015. An end-to-end measurement of certificate
revocation in the web’s PKIL In Proc. ACM Int. Measurement Conference (IMC).
Localytics 2017. http://www.localytics.com/. (2017).

Lumen Privacy Monitor 2017. https://play.google.com/store/apps/details?id=
edu.berkeley.icsi.haystack. (2017).

Man in the Middle 2017. Man in the Middle Proxy. http://mitmproxy.org. (2017).
B. McMahan and D. Ramage. 2017. Federated Learning: Collaborative Machine
Learning without Centralized Training Data. (2017). https://research.googleblog.
com/2017/04/federated-learning-collaborative. html

Miniclip 2017. https://www.miniclip.com/. (2017).

MoboGenie 2017. http://www.mobogenie.com/. (2017).

B. Moeller and A. Langley. 2015. TLS Fallback Signaling Cipher Suite Value
(SCSV) for Preventing Protocol Downgrade Attacks. RFC 7507 (Proposed Stan-
dard). (April 2015), 8 pages. https://doi.org/10.17487/RFC7507

Mozilla. 2017. Network Security Services. https://developer.mozilla.org/en-US/
docs/Mozilla/Projects/NSS. (2017).

D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M. Munafo,
K. Papagiannaki, and P. Steenkiste. 2014. The Cost of the "S" in HTTPS. In
Proc. ACM Int. Conference on emerging Networking EXperiments and Technologies
(CoNEXT).

Nogotofail 2017. Nogotofail - An on-path blackbox network traffic security
testing tool. https://github.com/google/nogotofail. (2017).

M. O’Connor. 2014. Google Services Updated to Address OpenSSL CVE-2014-
0160 (the Heartbleed bug). (2014). https://security.googleblog.com/2014/04/
google-services-updated-to-address.html

M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala. 2016. TLS proxies: Friend or
foe?. In Proc. ACM Int. Measurement Conference (IMC).

Popov, A. 2015. Prohibiting RC4 Cipher Suites. (2015). https://tools.ietf.org/
html/rfc7465

Qualys. 2017. SSL Labs’ database of user agent capabilities. (2017). https:
//www.ssllabs.com/ssltest/clients.html

A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, P. Gill, M.
Allman, and V. Paxson. 2015. Haystack: In Situ Mobile Traffic Analysis in User
Space. ArXiv e-prints (2015).

J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes. 2016. ReCon: Revealing
and Controlling PII Leaks in Mobile Network Traffic. In Proc. ACM Int. Conference
on Mobile Systems, Applications, and Services (MobiSys).

Rovio 2017. https://www.rovio.com. (2017).

Samsung Internet Browser 2017. https://play.google.com/store/apps/details?id=
com.sec.android.app.sbrowser. (2017).

SSL Labs 2017. https://www.ssllabs.com. (2017).

Super Mario Run 2017. https://play.google.com/store/apps/details?id=com.
nintendo.zara. (2017).

P. Svenda, M. Nemec, P. Sekan, R. Kvasnovsky, D. Formanek, D. Komarek, and
V. Matyas. 2016. The Million-Key Question-Investigating the Origins of RSA
Public Keys. In Proc. USENIX Security Symposium.

Syncthing. 2017. Block Exchange Protocol v1. (2017). https://docs.syncthing.
net/specs/bep-v1.html

D. Thomas, A. Beresford R, and A. Rice. 2015. Security Metrics for the An-
droid Ecosystem. In Proc. of the ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices.

Tiffany Alvord DreamWorld 2017. https://play.google.com/store/apps/details?
id=com.stargirlapps.google.tiffany. (2017).

Tuneln Radio 2017. https://play.google.com/store/apps/details?id=tunein.player.
(2017).

https://play.google.com/store/apps/details?id=com.fsck.k9.

https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
http://www.linuxjournal.com/article/10896
http://www.linuxjournal.com/article/10896
http://www.crashlytics.com
https://docs.fabric.io/javadocs/crashlytics/2.3.2/com/crashlytics/android/Crashlytics.html
https://docs.fabric.io/javadocs/crashlytics/2.3.2/com/crashlytics/android/Crashlytics.html
https://tools.ietf.org/html/draft-davidben-tls-grease-01
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://play.google.com/store/apps/details?id=mobi.mgeek.TunnyBrowser
https://play.google.com/store/apps/details?id=mobi.mgeek.TunnyBrowser
http://www2.ea.com/android
https://www.eff.org/observatory
https://play.google.com/store/apps/details?id=com.fsecure.freedome.vpn.security.privacy.android
https://play.google.com/store/apps/details?id=com.fsecure.freedome.vpn.security.privacy.android
https://developers.facebook.com/docs/graph-api
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
https://www.ftc.gov/news-events/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked
http://www.flurry.com/
http://www.gnutls.org/
https://www.google.com/admob/
https://analytics.google.com
https://www.google.com/transparencyreport/https/
https://www.google.com/transparencyreport/https/
https://support.google.com/nexus/answer/4457705
http://developer.android.com/google/gcm/index.html
http://developer.android.com/google/gcm/index.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://blog.cryptographyengineering.com/2015/03/03/attack-of-week-freak-or-factoring-nsa/
https://blog.cryptographyengineering.com/2015/03/03/attack-of-week-freak-or-factoring-nsa/
http://www.grpc.io/
https://play.google.com/store/apps/details?id=org.hola
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://notary.icsi.berkeley.edu
https://play.google.com/store/apps/details?id=com.jio.join
https://play.google.com/store/apps/details?id=com.fsck.k9
https://techcrunch.com/2016/06/14/apple-will-require-https-connections-for-ios-apps-by-the-end-of-2016/
https://techcrunch.com/2016/06/14/apple-will-require-https-connections-for-ios-apps-by-the-end-of-2016/
https://doi.org/10.17487/rfc1918
http://www.localytics.com/
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.haystack
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.haystack
http://mitmproxy.org
https://research.googleblog.com/2017/04/federated-learning-collaborative.html
https://research.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.miniclip.com/
http://www.mobogenie.com/
https://doi.org/10.17487/RFC7507
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://github.com/google/nogotofail
https://security.googleblog.com/2014/04/google-services-updated-to-address.html
https://security.googleblog.com/2014/04/google-services-updated-to-address.html
https://tools.ietf.org/html/rfc7465
https://tools.ietf.org/html/rfc7465
https://www.ssllabs.com/ssltest/clients.html
https://www.ssllabs.com/ssltest/clients.html
https://www.rovio.com
https://play.google.com/store/apps/details?id=com.sec.android.app.sbrowser
https://play.google.com/store/apps/details?id=com.sec.android.app.sbrowser
https://www.ssllabs.com
https://play.google.com/store/apps/details?id=com.nintendo.zara
https://play.google.com/store/apps/details?id=com.nintendo.zara
https://docs.syncthing.net/specs/bep-v1.html
https://docs.syncthing.net/specs/bep-v1.html
https://play.google.com/store/apps/details?id=com.stargirlapps.google.tiffany
https://play.google.com/store/apps/details?id=com.stargirlapps.google.tiffany
https://play.google.com/store/apps/details?id=tunein.player

Studying TLS Usage in Android Apps CoNEXT ’17, December 12-15, 2017, Incheon, Republic of Korea

[89] N. Vallina-Rodriguez, J. Amann, C. Kreibich, N. Weaver, and V. Paxson. 2014. A [95] X. Wei and M. Wolf. 2016. A Survey on HTTPS Implementation by Android
Tangled Mass: The Android Root Certificate Stores. In Proc. ACM Int. Conference Apps: Issues and Countermeasures. Applied Computing and Informatics (2016).
on emerging Networking EXperiments and Technologies (CONEXT). [96] Wire - Private Messenger 2017. https://play.google.com/store/apps/details?id=

[90] N.Vallina-Rodriguez, S. Sundaresan, A. Razaghpanah, R. Nithyanand, M. Allman, com.wire. (2017).

C. Kreibich, and P. Gill. 2016. Tracking the Trackers: Towards Understanding [97] Wired. 2017. Half the Web is Now Encrypted. That Makes
the Mobile Advertising and Tracking Ecosystem. In Proc. of the Workshop on Everyone Safer. (2017). https://www.wired.com/2017/01/
Data and Algorithmic Transparency (DAT). half-web-now-encrypted-makes-everyone-safer/

[91] B. VanderSloot, J. Amann, M. Bernhard, Z. Durumeric, M. Bailey, and J.A. Hal- [98] M.Y. Wong and D. Lie. 2016. IntelliDroid: A Targeted Input Generator for the
derman. 2016. Towards a Complete View of the Certificate Ecosystem. In Proc. Dynamic Analysis of Android Malware. In NDSS.
ACM Int. Measurement Conference (IMC). [99] Yandex 2017. https://www.yandex.com/. (2017).

[92] Viber 2017. https://play.google.com/store/apps/details?id=com.viber.voip. [100] ZeptoLab 2017. https://www.zeptolab.com/. (2017).

(2017). [101] L. Zhang, D. Choffnes, D. Levin, T. Dumitras, A. Mislove, A. Schulman, and C.

[93] VLC for Android 2017. https://play.google.com/store/apps/details?id=org. Wilson. 2014. Analysis of SSL Certificate Reissues and Revocations in the Wake
videolan.vlc. (2017). of Heartbleed. In Proc. ACM Int. Measurement Conference (IMC).

[94] WebRTC 2017. https://webrtc.org/start/. (2017).

https://play.google.com/store/apps/details?id=com.viber.voip
https://play.google.com/store/apps/details?id=org.videolan.vlc
https://play.google.com/store/apps/details?id=org.videolan.vlc
https://webrtc.org/start/
https://play.google.com/store/apps/details?id=com.wire
https://play.google.com/store/apps/details?id=com.wire
https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/
https://www.yandex.com/
https://www.zeptolab.com/

	Abstract
	1 Introduction
	2 Background: Android and TLS
	3 Lumen Overview
	3.1 Capturing Traffic Locally in User-Space
	3.2 The Lumen TLS Proxy
	3.3 Ethical Considerations

	4 Data Overview
	4.1 App Representativity
	4.2 Traffic Statistics

	5 Client-side Handshake Analysis
	5.1 Method: Developing TLS Library Fingerprints
	5.2 TLS Library Usage in the Wild
	5.3 The Case for Longitudinal Studies
	5.4 TLS Extensions
	5.5 Third-party Services

	6 TLS Misconfigurations and Vulnerabilities
	6.1 SSLv3 Usage
	6.2 Weak Cipher Suites

	7 Certificate Analysis
	7.1 Server Certificate Key Sizes
	7.2 Root Certificate Authorities
	7.3 Self-signed Certificates
	7.4 Certificate Pinning and CA Bundling
	7.5 Other Observations

	8 Related Work
	9 Discussion
	10 Conclusions and Future Work
	11 Acknowledgments
	References

